## Section 2.4

The Chain Rule: If $y=f(u)$ is a differentiable function of $u$ and $u=g(x)$ is a differentiable function of $x$, then $y=f(g(x))$ is a differentiable function of $x$ and

$$
\frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x}
$$

or, equivalently,

$$
\frac{d}{d x}[f(g(x))]=f^{\prime}(g(x)) g^{\prime}(x)
$$

1) Each of the following is a composite function of the form $y=f(g(x))$. Identify $u=g(x)$ and $y=f(u)$ in each case.
a) $y=\sqrt{x^{2}-3 x}$
b) $y=\sin \left(x^{2}\right)$
c) $y=\frac{3}{2 x^{2}-1}$
d) $y=\sin ^{3} x$

The General Power Rule: If $y=[u(x)]^{n}$, where $u$ is a differentiable function of $x$ and $n$ is a rational number, then

$$
\frac{d y}{d x}=n[u(x)]^{n-1} \frac{d u}{d x}
$$

or, equivalently,

$$
\frac{d}{d x}\left[u^{n}\right]=n u^{n-1} u^{\prime}
$$

2) Find the derivative of the following functions.
a) $f(x)=\left(5 x^{3}-4 x\right)^{6}$
b) $g(x)=\frac{3}{8 x^{2}-1}$
3) Find all points on the graph of $f(x)=\sqrt[3]{x^{2}-4}$ for which
a) $f^{\prime}(x)=0$
b) $f^{\prime}(x)$ does not exist.
4) Find and simplify the derivatives of the following functions.
a) $f(x)=2 x^{3} \sqrt[3]{3 x^{2}-4}$
b) $g(x)=\frac{2 x-1}{\sqrt{3 x^{2}-1}}$
c) $h(x)=\left(\frac{5 x^{3}-2}{2 x+3}\right)^{3}$
5) Find the derivatives of the following functions.
a) $y=\sin ^{2} x$
b) $y=\tan x^{2}$
c) $f(x)=2 \cos ^{2} 3 x$
d) $g(\theta)=3 \theta \sec 2 \theta$
e) $h(t)=\sin (\cos t)$
6) Find an equation of the tangent line to $f(x)=\cos 2 x-3 \sin x$ at the point $\left(\frac{\pi}{6},-1\right)$. Then determine all the values of $x$ in the interval $(0,2 \pi)$ at which the graph has a horizontal tangent.

Homework for this section: Read the section and watch the videos/tutorials. Then do these problems in preparation for the quiz: \#3, 27, 32, 59, 79, 89, 103

